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SUMMARY 

An efficient 2D non-linear numerical wave tank called LONGTANK has been developed based on a multi- 
subdomain (MSD) approach combined with the conventional boundary element method (BEM). The multi- 
subdomain approach aims at optimized matrix diagonalhation, thus minimizing the computing time and reserved 
storage. The CPU per time step in LONGTANK simulations is found to increase only linearly with the number of 
surface nodes, which makes LONGTANK highly efficient especially when simulating long-time wave evolutions in 
space. 

Appropriate treatment of special points on the boundary ensures high resolution in LONGTANK simulation 
beyond initial deformation and breaking, which allows detailed study of breaking criterion, breaker morphology, 
breaking dissipation, vorticity generation, etc. 

Detailed numerical implementation has been given with demonstration of LONGTANK simulations. 
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1. INTRODUCTION 

In connection with energetic waves on the ocean, there is now great interest in planar wave groups and 
in wave deformation and breaking within such groups.' The non-linear processes at work, leading to 
breakdown, are largely not susceptible to purely theoretical analysis. For understanding of these 
processes, numerical simulation is required. 

The numerical simulation of non-linear progressive, surface waves in one dimension was earlier 
carried out by Dold and Peregrine' and Vinje and Brevig? making use of boundary elements and of 
the method of wave projection in time due to Longuet-Higgins and Cokelet! This early work took the 
wave trains to be periodic and was limited to a small number of waves. Utilizing iterating matrix 
solutions, Dold and Peregrine2 found the computing time to increase as the square of the number of 
surface nodes; this fact limited these boundary element computations to x / A =  O( lo), where 3, is the 
wavelength and x is the tank length. 

The numerical simulation of tank wavemaking was carried out by Lin et al.' and subsequently by 
Dommermuth et al,6 Grilli et al? and Cointe,* again for a small number of waves, O( 10). 

The numerical modelling of water-wave-connected problems, especially in a wave tank, is always 
composed of three  element^:^ wave generation, propagation and absorption. The efficiency of a 
numerical wave tank depends not only on the quality of the wave absorption technique, which allows 
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the tank length to be most effectively used, but also on the computational method for the calculation of 
wave propagation for large distances, which is crucial for the simulation of non-linear processes in real 
wave trains under unstable conditions. Experiments of Su and Green' show that the downtank distance 
necessary for non-linear wave processes to produce strong spatial variations leading to breaking 
increases with decreasing initial wave steepness a&, roughly as ( a ~ k O ) - ~ ,  and x / A  = O(100) is 
required for a,& = O( 10-l). This is a distance roughly one order of magnitude larger than numerical 
tank lengths achieved prior to the present work. 

We have developed a two-dimensional numerical wave tank called LONGTANK; a tank length 
( x / l )  of 1 10 has been achieved utilizing a multi-subdomain approach together with the boundary element 
method. In our application the size of subdomains has been optimized for computational efficiency. The 
present approach features matrix block-diagonalization and has both the advantages of the boundary 
element method, which reduces the dimension of the problem, and of space discretization methods, which 
limits the bandwidth in the system matrix. LONGTANK is thus highly efficient for wave calculations, 
allowing non-linear wave evolution to sufficiently long distances, while the CPU in each step increases 
only linearly with the number of surface nodes. The latter is evidence of the success of this computational 
method. 

The efficiency of LONGTANK is further enhanced by installation of a moving beach before the front 
of the entire wave train to absorb longer weak waves that leak through the front but are of no interest 
for the study of non-linear wave phenomena. The damping technique used by Baker et all0 and more 
recently by Cointe? which has been demonstrated to be efficient for attenuating monochromic waves, 
is extended here to damp more general waves. 

The methodology of LONGTANK is presented in the following sections with examples of 
LONGTANK simulations. Basic formulations of the free surface flow and the boundary integral 
equation utilizing the method of Green hc t ions  are given in Section 2. The multi-subdomain 
approach, which contributes to the high efficiency of LONGTANK, is presented in Section 3. The 
numerical procedures of LONGTANK, including tank set-up, boundary discretization and integration, 
treatment at special points on the boundaries, the moving beach and jet impact conditions, etc., are 
discussed in Section 4. Some LONGTANK simulations of wave evolution, deformation and breaking 
are demonstrated and compared with experiments to show the powerful capability of LONGTANK and 
to validate its high accuracy. Some of the results have been presented and discussed in previous 
papers' '-13 which emphasized physical applications of LONGTANK. 

2. THEORETICAL FORMULATIONS 

Longuet-Higgins and Cokelet4 pioneered the numerical computation of non-linear surface gravity 
waves in deep water by following the time history of space-periodic irrotational surface waves, 
represented by the independent co-ordinates and the velocity potential of marked particles at the free 
surface, and solving an integral equation at each time step for new normal velocities. 

This method has been followed by others and extended to study comprehensive non-linear surface 
wave problems and has divided into two main branches: formulating two-dimensional problems in the 
complex plane by defining a streamfunction ~ , b ~ ~ ~ ~ ~ > ' ~  and using potential theory and a Green 
 function.'^" Both approaches are appropriate to solve two-dimensional surface wave motions, but the 
latter has the potential to deal with three-dimensional problems and thus is chosen here. 

We assume that the fluid is inviscid and incompressible and the flow is irrotational. The effects of 
surface tension can be included, but they are ignored in most cases we have studied. 

Consider a volume of water, R, surrounded by boundaries consisting of the water surface Ts, tank 
bottom rB, and side walls Tw, and let (x, y, z) denote rectangular co-ordinates with the x- and y-axes 
lying on the mean surface and the z-axis vertical and upward. 
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With the approximation of incompressibility and irrotationality, the fluid velocity u‘ becomes the 
gradient of the velocity potential + and Laplace’s equation is satisfied everywhere in the volume R: 

ii = V+, (1) 

V . ii= V2+ = 0. (2) 
Thus the velocity potential and velocity field within R are uniquely determined by their values on the 
boundaries Ts, rB, and Tw and can be solved by the Green fhction method. 

At the free surface q = q(x ,  y ,  t )  we have the kinematic conditions 

where D/Dt = a /d t  + V+ . V denotes the material derivative or differentiation following a given 
particle. 

The rate of change in potential + can be immediately derived from Bernoulli’s equation: 

where pa is the atmospheric pressure. 

tension. With surface tension T,, we have 
The pressure on the surface, p, is normally equal to atmospheric pressure in the absence of surface 

p -pa = -Ts(V .Z). (5  1 
The boundary integral equation for the solution of the normal derivative of the potential at the water 

surface is formulated by applying Green’s theorem, which states 

where tl is the interior angle at the field point P lying on the boundary and a = 2n when P is inside R. 
For the time domain calculation of the surface wave motion in a wave tank, mixed boundary 

conditions may be imposed. On the water surface Ts the velocity potential is known from previous 
time steps and the normal derivative of the potential is the unknown variable; on the boundary of the 
wavemaker, rm, the normal velocity of the water particle is known to be equal to the normal velocity 
of the wavemaker; on the tank bottom TB and the end wall of the tank TEw , the normal velocity is zero. 
Thus equation (6) is applied in two different forms on different parts of the boundary. 

P E rs (boundary with Dirichlet condition) 
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P E rm n r B  rl FEW (boundary with Neumann condition) 

3. MULTI-SUBDOMAIN APPROACH 

The numerical treatment of problems in potential theory by the boundary element method is classical. 
A distinct advantage of the boundary element method over the finite difference and finite element 
methods is that the space dimension of the problem is reduced by one. However, this is accompanied 
by the disadvantage of a full system matrix established along the whole boundary; the time to generate 
such a full matrix and to solve the corresponding algebraic equations requires about a cubic increase in 
computing time with the number of nodes on the entire boundary. Yueng’’ discussed the relative 
efficiency among various numerical methods and gave a formula for comparison which shows that for 
surface flow problems with a large computational domain both the boundary element method and 
space discretization methods are inefficient and costly. 

The multi-subdomain approach used in LONGTANK (see Figure 1) takes advantage of both 
boundary element and space discretization methods: the fluid domain is divided into a set of 
subdomains (or super elements) and the BEM formulation is applied to each subdomain. Therefore the 
coefficient matrix of the simultaneous equations becomes block-banded. With optimization the total 
number of influence coefficients from the BEM formulation will be significantly reduced and the 
computing time for solving the algebraic equations will also be significantly reduced utilizing the 
banded solver. 

To study strong wave modulation leading to wave breaking in an unstable wave system of small 
initial steepness, the tank has to be long enough. Therefore the computational domain is rectangular 
with a much larger number of grid points on the free surface than on the two ends. This is ideal for 
introducing the multi-subdomain approach, which is especially aimed at optimized ‘matrix 
diagonalization’ . 

3.1. Matrix block diagonalization 

By inserting vertical numerical inner boundaries in the tank with no physical significance, the whole 
computational domain is divided into a set of parallel subdomains (see Figure 2(a)). On these common 
boundaries both the potential and its n o d  derivatives are unknown a priori. Two equations can be 
established at each point on these boundaries, since the BEM formulation will apply to subdomains on 
either side. In each subdomain a set of linear algebraic equations is formed with the coefficients only 

~- .. 
Figure 1. Schematic of non-linear numerical wave tank, LONGTANK 
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Figure 2. Implementation of multi-subdomain approach (a) Computational domain divided into subdomains (schematic). Dashed 
lines with arrows indicate the sequence of global numbering when the boundaries are. discretized; m, the number of panels on the 

surface in one subdomain, n, the number of panels on vertical walls. The dotted line implies an image being introduced to 
exclude the bottom boundary. (b) Showing the diagonaliized coefficient matrix 

involving grid points on the boundaries of the same subdomain. By numbering the discrete points on 
all the boundaries globally in the sequence shown in Figure 2(a) (broken lines with arrows) and 
assembling a set of locally full coefficient matrices into a global matrix, the structure of this global 
matrix features block diagonalization (see Figure 2(b)). This band diagonal matrix is stored and 
manipulated in a so-called compact form, which results as if the matrix is tilted 45" clockwise. When 
efficiently structured, matrix diagonalization can lead to significant reductions in the requirement for 
reserved storage and in CPU time in both the generation of the coefficient matrix and the solution of 
the algebraic equations. 

3.2. Optimization of domain decomposition 

Matrix diagonalization is achieved at the price of an extended matrix; the net efficiency of this 
approach depends on both the topography of the domain and the way the domain is divided. In the case 
of a long wave tank the discretization of the free surface requires many more panels than exist on other 
boundaries (real or numerical). Therefore the wave tank topography is actually ideal for the 
implementation of the multi-subdomain approach. An appropriate domain discretization is to use 
vertical inner boundaries with an equal number of free surface grid points between them. The number 
of subdomains can be optimized to achieve the least computational time for the generation and solution 
of the algebraic equations. 

It would be ideal to choose the minimum sum of TCM (the time required to generate coefficient 
matrixes for algebraic equations) and TSE (the time needed for solution of these equations) as the object 
of optimization. In BEM, TCM is usually much larger than TSE, so we first optimize TCM here. As 
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shown earlier in Figure 2(a), m represents the number of panels on the water surface in each 
subdomain, n is the number of panels on the inner vertical boundary and the whole computational 
domain is divided into k subdomains. The total number of panels on the water surface is M and 
m(k - 1 )  < M 5 mk, since M may not be exactly divisible by k. Thus, except that the number of 
nodes in the last subdomain may be equal to or less than m + 2n + 1 ,  the number of nodes in each 
subdomain is constant and equal to m + 2n + 1. Then, with the multi-subdomain approach. 

(8) 
M 
m TCM w k ( m + 2 n +  1 1 2  = ~ m + 2 ~ ( 2 n +  1) + - ( 2 n +  112 

and TCM is minimized when 

i.e. 
m = 2 n + 1 ;  

this results in 
TCM - 4(2n + 1)M. 

Equation (1 1 )  shows that the time for the formation of the coefficient matrix in the multi-subdomain 
approach is linearly proportional to the number of panels on the water surface rather than quadratically 
proportional as in the single-domain approach. The efficiency of the multi-subdomain approach can be 
partly seen in Figure 3(a), where the ratio of ( T c M ) M  (multi-subdomain) over ( T c M ) ~  (single domain) 
is shown. 

The time required to solve the equations, TSE, can also be minimized in the same way and the 
optimized m is a solution of the third-degree equation 

m3 + p m  + q  = 0, 

-0 0 -0 0 
-0 500 1000 1500 2000 -0 500 1000 1500 2000 

M K 
Figure 3. Efficiency of multi-subdomain approach compared with singledomain approach (a) relative time for generating 

coefficient matrix, (b) relative time for solving linear algebraic equations 
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where 

3M3 
8n2(6n + 1) 

q = -  
(15n + 1)M2 
8n2(6n + 1) ’ 

p = -  

The optimal efficiency for solving equations can be seen in the ratio of ( T s E ) ~  (multi-subdomain) over 
(TsE)~  (single domain) shown in Figure 30). 

When the time for generation of coefficient matrixes is minimized, the time for solving equations is 
also decreased, even though it may not be minimized. The variation in efficiency with the number of 
panels on each subdomain is plotted in Figure 4 for a fixed panel number on vertical walls (n = 12) and 
for M = 1000, 2000, . . . , 5000. 

We conclude that the highest ensemble efficiency with the multi-subdomain approach is achieved 
when the number of panels on the free surface in each subdomain doubles the number on the vertical 
inner wall, equation (10). This high efficiency is clearly seen in Figure 5 ,  showing a linear increase in 
CPU time with the panel number on the free surface. 

Considering the short time involved in the final stage of breaking (less than half a wave period), the 
vertical inner boundaries are chosen so as to avoid them passing through the breaking region itself. 

To demonstrate quantitatively the efficiency of MSD, the following example is given. For the case of 
5000 nodes on the free surface and 10 nodes on each of the two ends, about 25-2 million 
(5020 x 5020) influence coefficients need to be calculated for set-up of 5020 equations in 
normal BEM, while only about 0.6 million (250 x 40 x 60) influence coefficients are needed 
for 10,000 equations in MSD with 249 vertical inner boundaries with 10 nodes on each of them. 
Thus MSD results in about 97.5% reduction in both storage and CPU time compared with normal 
BEM. 

Figure 6 shows an example of LONGTANK simulation of strong wave grouping within a wave train 
of initial steepness of 0.14 generated by a wavemaker with 1% of the total wave energy in each of its 
resonant side-bands. This demonstrates the ability of LONGTANK for the study of the long-time 
evolution of water waves in space. 

Figure 4. Ratio of time used with multi-subdomains over time used with single domain for generating coefficient matrix (witb 
diamonds) and solving linear algebraic equations (no diamonds), versus panel number on fire surface in each subdomain 
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Figure 5. CPU per time step in wave calculation in LONGTANK versus number of panels on whole surface 
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Figure 6. Simulated wave train (left to right), = 0 .14. Lines indicate propagation at p u p  velocity (- -) and phase velocity 
(- . -). The front was suppressed and breaking did not occur 
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3.3. Intersection of outer and inner boundaries 

In the interior of the computational domain the velocity potential and its derivatives are continuous 
but unknown prior to solution. When we insert vertical walls as shown in Figure 2(a), we introduce 
new unknowns on the inner boundaries in addition to those on the physical boundaries. At each point 
on these inner boundaries there are two unknowns, potential and normal velocity, and the equation 
must be set up twice, one in the subdomain on each side of the inner boundary. Thus the increased 
number of equations exactly matches the increased number of unknowns. 

On the surface boundary the velocity potential is known from the previous time step using equations 
(3) and (4) and the tangential velocity can be obtained by Lagrangian interpolation; then the only 
unknown is the normal velocity. After discretization, one equation is set up at each discrete point which 
balances the single unknown there. Although at some surface points where an inner boundary is 
intersected two equations can be set up mathematically, the number of unknowns remains one; this fact 
could result in overdetermination. The detailed treatment will be given in Section 4.3. 

4. LONGTANK-NUMERICAL IMPLEMENTATION 

4. I .  Wave tank set-up and boundary discretization 

A two-dimensional numerical wave tank, LONGTMK, is set up with a wavemaker installed at the 
left end, which generates surface gravity waves that propagate along the tank a distance of up to 110 
wavelengths. For shallow water cases a piston-type wavemaker (a vertical plate moving back and forth) 
is used; for deep water cases a plunger-type wavemaker (a wedge moving up and down) is employed. 
Other types of wavemakers can also be installed for specific purposes. 

When the wavemaker begins to oscillate at the left end of the tank, waves begin to propagate on the 
originally still surface. In LONGTANK a movable end wall is set up initially at a distance of around five 
wavelengths to the right of the wavemaker. As the wavemaker oscillates, the end wall moves to the 
right and the tank is lengthened as needed. 

To improve the efficiency of tank utilization and to avoid small waves reflecting back from the end 
wall, a numerical damping beach is attached to the moving end wall. The beach is capable of absorbing 
the longer waves that are of no interest to us but travel faster than the front of the wave train. The beach 
is always several wavelengths ahead of the main wave train and moves with the same speed as the wave 
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train (group velocity), allowing effective use of the computational region while avoiding reflection 
from the end. 

To solve the boundary integral equations numerically, the boundaries are discretized into linear 
elements (see Figure 7). Grid points on the water surface are fixed to water particles and equally spaced 
initially. Later they may be more concentrated on the wave crest and trough and less elsewhere. This 
natural tendency coincides with the numerical requirement that more grids are needed in regions of 
high curvature. On the vertical boundaries, including the front and end walls of the tank and numerical 
inner walls, the grid spacing is increased exponentially with depth because of the exponential decay of 
the velocity potential with depth. The boundary on the tank bottom can be removed by introducing 
tank images. Grids on all the boundaries are sorted into different types as indicated in Figure 7. The 
first three types are basic. Grids of type 4, where a4/an is known but discontinuous are easily handled 
by connecting (a4ldn)-  to the left element and (a$/&)+ to the right element. Grids of types 5-7 
need careful treatment which will be discussed in detail later. 

4.2. Integration and differentiation 

In LONGTANK, linear elements are chosen with both linear geometrical representation and 
interpolation, because all the integration in equation (7) can be expressed analytically and thus 
numerical integrations are avoided. 

In a local co-ordinate system ( 5 , ~ )  with its origin at a field point, the <-axis in the tangential 
direction (clockwise) of the element and the ?-axis normal to the element and pointing outwards we 
have 

where I1, I2, I3 and I4 are integrations along elements of ln r,  an/a( ln  r ) ,  5 ln r and tan/d(ln r )  
respectively, all having a closed form. l 6  

To project surface wave profiles from the current time onto the next time step, d4/as is also needed 
on the water surface. In general, differentiation based on three-point Lagrangian interpolation is 
applied in LONGTANK. Through numerical tests, generally 40 elements in one wavelength have been 
chosen. 

During the last stage of wave breaking, a jet is formed from the wave crest, where higher and higher 
curvature evolves, so special treatment is needed near the tip of the jet which will be discussed in the 
following subsection. 

4.3. Treatments at special points on boundary 

Surface-wavemaker intersection. For wavemaking or wave-body interaction problems an 
appropriate treatment of the singularity at the intersection of the free surface with the body (grid of 
type 5 in Figure 7) is always required. 

In LONGTANK the comer treatment is clearly shown in Figure 8(a). At the intersection point the 
potential itself is continuous but its tangential and normal derivatives are not because of geometric 
discontinuity. Assume that the superscripts '-' and '+' indicate respectively the left and right potential 
derivatives at that point. Excluding the extreme case of a jet forming at the intersection, we have the 
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(b) Grid d type 6 

Figure 8. Treatments at special points on computational boundaries 

two equations shown in Figure S(a) which satis@ the kinematic condition on the boundary with the 
wavemaker. Because the motion of the wavemaker is imposed and its normal velocity U,, is only a 
function of time, there is only one independently unknown variable, (dn)+ or (A)'. To be consistent 
with other surface points, we choose (d,,)' as the unknown variable, which can be solved from the 
boundary integral equation, and then (&)+ can be determined from the kinematic condition given in 
Figure 8(a). 

The treatment given here is more reliable and concise than that in References 5,17 and 18 and it is 
generally applicable to any wave-body intersection problem. Figure 9 shows an example of wave 
breaking near a wavemaker. 

Surface point with high curvature. During the last stage of wave breaking, waves experience strong 
deformations: greater steepness, front face steepening and a jet forming at the crest. Then numerical 
differentiation will not be appropriate for the tangential derivatives of the velocity potential at those 
surface points where high curvature occurs owing to wave deformation (grids of type 6 in Figure 7). 
An alternative is to solve for them directly from the boundary integral equation together with normal 
derivatives at those points. Thus two equations at each grid of type 6 need to be established to balance 
the two unknown variables there. Song and Maruo" employed discontinuous elements introduced by 
Brebbia and Domingue$O to deal with the discontinuous normal derivatives at the tip of the spray and 
used extrapolation to get the two normal velocities at the tip. In LONGTANK (see Figure 8@)) the two 
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Figure 9. Wave breaking near wavemaker: (a) from Reference 5; (b) from Reference 17; (c) from LONGTANK simulation 

unknown variables are the normal and tangential velocities at the central gridj. Two field points Pj and 
PJ where equations are to be set up are put on two neighbouring elements near the central gridj and the 

0 10 

(ak),=O.Zl , t/T=33.924-34.034 

-0.00 ' I 
13.90 13.95 14.00 

X/X 

Figure 10. Wave breaking in LONGTMK, showing formation of a plunging jet 
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integrations on these two elements in the equations set up at Pj and 5 can also be expressed 
analytically. No extrapolation is involved. The positions of Pj and 5 on the neighbouring elements are 
fairly flexible except for the midpoint, which should be excluded in the case of two neighbouring grids 
both of type 6. In LONGTANK a distance to the central point j of 20% of the element length is chosen. 

The breaking jets from numerical simulations in LONGTANK have smooth jet forms as shown in the 
experimental photograph of Bonma~&;~ while all previous computational results in the literature show 
very sharp tips in the breaking jets which prevented the continuation of the computation. The detailed 
analysis of particle motion near the tip of the jet will further verifL this numerical scheme. 

Figure 10 shows an example of breaker formation within a strongly modulated wave train which has 
initial steepness 0-21. 

Intersection ofj-ee surface with inner vertical boundary. In contrast with the surface point of high 
curvature, there are two possible equations at the intersection of the free surface with the inner vertical 
boundary. These two equations can be set up in subdomains on each side of the inner vertical 
boundary, while only one unknown variable exists (inner vertical boundaries are avoided in regions of 
high surface curvature). Possible treatments of this problem are: establishing an equation only once in 
either of two neighbouring subdomains; establishing two equations, one in a subdomain on each side, 
and introducing a tangential velocity at the intersection point into the unknown variable system which 
is actually not an independent unknown variable. Both these treatments achieve a balance between the 
numbers of unknowns and equations. 

Our numerical tests found that with the former treatment the solved normal velocities have a little 
roughness near the intersection point, while with the latter treatment the solved normal velocities are 
smooth everywhere and the solved tangential velocities at the intersection points agree very well with 
those from numerical differentiation based on three-point Lagrangian interpolation along the free 
surface. The latter treatment is thus adopted in all LONGTANK simulations. Details are shown in 
Figure 8(c). 

4.4. Jet refining and smoothing 

According to convergence tests carried out in time and space, generally 40 nodes per wavelength on 
the free surface and 40 time steps in one wave period have been chosen. However, during the last stage 
of wave breaking, the wave first deforms, then steepens and finally a jet forms from the crest, where 
high curvatures occur and particles speed up rapidly. To capture the jet as precisely as possible, which 
is of importance in post-breaking studies, the time steps and the local grid number both need to be 
increased. 

It is found that regridding slows down the process of jet forming artificially because it always 
suppresses the small jets that have just formed. It is appropriate to increase the density of the grid 
distribution in that small region by inserting new grids between the existing grids; we call this refining. 
Thus no information is lost and no accuracy is lost within the approximation of linear geometry and 
interpolation along the element. 

In LONGTANK the refining begins with steepening of the front and the jet-forming process is 
closely monitored by temporarily halting the calculation and restarting again. The increase in grid 
number is gradual and restricted to a specified region; the time steps have to match the smallest grid 
space, since the velocity is accelerated during this time. 

When the jet has well formed, a weak instability is sometimes found on the lower face of the jet. 
Local smoothing is thus applied when necessary. The uniform five-point smoothing formula used by 
Longuet-Higgins and Cokelet4 is expanded here to general five-point smoothing. 
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Assume that the five points are j - 2, j - 1, j ,  j + 1 and j + 2 .  Move the origin of the curvilinear 
co-ordinates s onto the central point j and more generally let 

As1 =sj+1 -sj, b 2  = s j + 2  - sj, b-1 =sj-sj-1, A s - 2  = sj - s j -2 .  

Then 

7 (15) 
f i = a o =  -2b-1 (A1 - A2 + A3) - 2 b 1  (A4 - As + A6) 

4 ( b - l  + b l ) A 7  

where 

A1 = 6 - 2  - & ) [ ( & d 2 b 2  + ( b 2 ) 2 b 1 1 ,  

A2 = 6+1 + & ) [ ( ~ - 2 ) 2 ~ 2  + ( b 2 ) 2 b - 2 1 ,  

A3 = 6 + 2  - & ) [ ( b d 2 b - 2  - (A.s-2)2b11, 

A4 = 6 - 2  - & > [ ( b - 1 ) 2 b 2  - ( A . s 2 ) 2 ~ - 1 1 ,  

A5 = 6- 1 + $ > [ ( b - 2 ) 2 b 2  + (A.s2)2b-21, 

A6 = 6 + 2  - & ) [ ( b - 2 ) 2 b - l  + (b-1)2AS-2] ,  

A7 = + ( A s ~ ) ~ A . - ~ .  

In the case of equal spacing, equation (1 5) gives exactly the uniform five-point smoothing formula 
used by Longuet-Higgins and Cokelet:. 

Figure 11 shows an example of refining during breaking. 

4.5. Moving beach 

The idea of a numerical beach in a wave tank was earlier implemented by Baker et a l l 0  Recently 
Cointe* applied this numerical beach to his own tank, which has a fixed tank length of about 10 
wavelengths, and satisfactory absorption was achieved. 

Physically it is the oscillations within the waves (including the position and potential of the 
water particles) that must be damped. Thus damping terms are added to the RHS of equations (3) 
and (4): 

where y (xe )  is a damping coefficient and the subscript ‘e’denotes the equilibrium state when there is no 
wave propagating. 

As for the real tank, the beaches are designed to attenuate waves gradually over a certain distance Lb. 
In LONGTANK, in the damping region Xb(t) 5 x 5 XEND = Xb(t) + Lb, the damping coefficient is 
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taken in a form which is equivalent to that used by Baker et ~ 1 . ' ~  and Cointe? 

A quadratic increase in the damping intensity is chosen; &, is the magnitude of the damping intensity 
and has the unit of angular frequency. The choice of Sb is crucial for successful absorption, so a more 
careful treatment than that of Cointes is used here. 

With insight given by equations (16H19), it is clear than Qb can be simply chosen to be the wave 
frequency o if the wave is monochromic and that the choice of $b is independent of 4 but depends on 
the magnitude (denoted by 'hats' in the following equations) of the oscillations divided by the 
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Figure 1 1. Wave breaking in LONGTANK, a& FZ 0 '28: (a) wave-forms in final stage of breaking: @) formation of a plunging 

jet, showing refining technique 
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magnitude of the variable: 
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h 

where all the variables are following particles as in a Lagrangian system. 
The length of the beach determines how gently the waves are attenuated within the beach: the longer 

the beach is, the smaller are the dynamic effects left in the tank. In most cases a one-wavelength beach 
is appropriate. 

Figure 12 presents a comparison of generated sinusoidal wave trains between LONGTANK 
simulations and corrected frequency domain solutions of Yao,22 showing the efficiency of the moving 
beach in LONGTANK. 

4.6. ‘Peeling’ technique 

Another numerical technique used in LONGTANK is ‘peeling’ of the top water of the wave crest to 
suppress undesirable breaking. It is observed in wave tank experiments that the leading crest in the 
wave train with a sufficient initial steepness usually breaks before the following crests, which will stop 
numerical computation. Thus it is desirable to suppress the breaking that occurs at the wave front in 
order to achieve breaking away from its influence. It is also desirable to suppress the breaking of waves 
prone to break within the train in order to allow successive breaking in the wave train. Therefore the 
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Figure 12. Comparison of sinusoidal wave trains between LONGTANK simulations and corrected linear solutions of Yao,= 
showing efficiency of moving beach in LONGTANR (a) a& = 0 .07; (b) a& = 0 . 163 
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- Leading wave has been suppressed after t= lOOT.  Case2 6a - 
Without suppression. leading wave breaks in next period. Case 2 6b 

t=109T 

0 08 - 

technique called 'peeling' is developed for the mathematical suppression of breaking with minimum 
long-range effect. 

The technique involves slowly 'peeling' away the water on the suppressed wave crest. A limiting 
wave height is set for the wave crest under control. Determination of q L m G  is empirical in 
the current stage and q L m G  varies from 0 . 25  to 0 .28  in LONGTANK suppressions depending on 
the initial wave steepness. As soon as the controlled crest climbs above this limiting height, i.e. 
qc > q L M m G ,  a new free surface between two zero crossings is formed, q' = q x q L m G / q c ,  by 
peeling away the top water to a relative maximum thickness tmax = (q, - qLImG)/qc. As long as the 
time step is small (40 steps per period in LONGTANK) compared with the growth time of the crest, the 
thickness of the water layer being peeled away is very small (t- is less than 3% in all our 
suppressions), so its static pressure can be neglected. The dynamic effect of the suppression is also 
small because of the slowness of 'peeling'. The potential on the new surface is predicted by 
exponential decay. 

This technique has been applied at the front of wave trains as well as inside non-linear wave groups 
generated in LONGTANK for the study of wave breaking within groups. The insignificant long-range 
effect of suppression on the following waves is shown in Figure 13, where the leading wave is both 
suppressed and not. 

4.7. Forward time stepping 

Hammings' fourth-order predictor/corrector method has been applied for normal forward time 
stepping, while the fourth-order Runge-Kutta method has been used for forward time stepping at the 
beginning of the calculation or when new nodes are introduced on the free surface. The nodes on the 
free surface represent the water particles and move in the direction of the velocity vector. No numerical 
instability appears except occasionally on the lower face of the breaker. 

4.8. Jet closure and splash 

With the formation of a jet and its successive free fall, the jet impacts and penetrates the front face of 
the wave crest. In the conventional BEM formulation, even just before the initial impact, an ill- 
conditioned or nearly singular coefficient matrix will halt the BEM calculations. Thus a finite distance 
(not too small) between the jet and the front surface just before impact is required, otherwise they have 
to be treated as already touching. Furthermore, the modified single- and double-layer potential have to 
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Figure 13. Simulated wave train, showing effect of fkont suppression 
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Figure 14. Plunging breaker computed as if the breaker does not see the surface. This demonstrates the continuation of breaking 
after impact 

be applied on the common surface, as used by Zhang et al.23 in the collapse of a cavitation bubble. 
In the MSD approach, however, the penetration jet and impacted (or soon to be impacted) water 

surface can be easily arranged in different subdomains, thus avoiding the singular behaviour of close 
surfaces due to the BEM formulation. No modification of the boundary integral equation, applied in 
each subdomain, is required. Even without M e r  specifying the physical impact conhtions on the 
common surface, the computation can be continued as if the jet does not see the free surface (see 
Figure 14). 

The initial stage of jet closure and splash can be simulated when appropriate physical conditions are 
applied on the common impact surface, which we discuss below. 

Condition at instant of impact. As pointed by Zhang et al.23 in the problem of bubble collapse, each 
node impact generates a pressure impulse I which is defined by 

t I' 

I = JiFe I*, p d, (21) 

where P is the impact pressure and t' and t" represent the instants just before and after impact 
respectively. For infinitesimal time intervals from t' to t" the relation between the velocity potentials 4' 
and 4" just before and after impact respectively can be obtained from Bernoulli's equation:24 

Applying relation (22) to both impacting material points ('+' denotes the jet surface and '-' the 
fiont free surface) and noticing that the pressure impulses I+ and I- are equal, the condition at the 
instant of impact is obtained as 

(23) 411 + - 4 1 1  - = 41 + - 41 -, 
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which states that the difference in 4 between two impacting points remains the same during the 
impact.23 

Boundary conditions on the common surface. The kinematic boundary condition on the common 
surface after impact is that the velocity normal to the common surface is continuous across the 
interface: 

where n+ and n- are outward normals to the upper (jet) and lower (front free surface) interfaces 
respectively. 

The dynamic boundary condition is the continuity of the pressure across the interface: 

P+ = P-. (25 1 
Bernoulli’s equation can be applied on both the upper and lower interfaces of the common surface: 

Using equations (24) and (25), the condition on the common interface is obtained as 

Realizing that the tangential velocity across the interface is discontinuous and that initially 
contacting fluid particles at the interface might move away from each other, the two material 
derivatives on the LHS of (27) have to follow two different particles. Time marching of equation (27) 
gives 4+ - 4- at the next time instant for all pairs of previously contacting points. Then 4+ - 4- for 
newly contacting points can be expressed after interpolation and will serve as one boundary condition. 
The other boundary condition is equation (24). 
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Figure 15. Initial stage of jet closure and splash. The tangential velocity around the jet is indicated 
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Figure 15 shows a preliminary simulation of the initial stage of jet closure and splash which is 
similar to the experimental observations of Tallent et alF5 The tangential velocity, along the boundary 
of the new cavity and the common interface near the tip of the jet, has been indicated and the generated 
vorticity has been estimated. l2 

5 .  CONCLUSIONS 

The multi-subdomain approach combined with the boundary element method has greatly enhanced the 
efficiency of computations in the 2D non-linear numerical wave tank. Featuring optimized matrix 
diagonalization when the number of surface nodes in each subdomain is double the number on the 
vertical inner boundary, this approach almost minimizes the computing time for both establishing and 
solving the boundary integral equations. This results in only a linear increase in CPU time with the 
total number of surface nodes in LONGTANK simulations. 

The intersection points of the free surface with the vertical inner boundary have been appropriately 
treated by introducing the surface tangential velocity as the second unknown variable at those points 
and establishing an equation twice there, one in a subdomain on each side of the inner boundary. The 
numerical difficulty at the intersection of the free surface with the wavemaker, due to the discontinuity 
of normal velocity there, has been overcome using a correction procedure. The tangential velocity at 
surface points with high curvature has been calculated from the boundary integral equations instead of 
using a three-point Lagrangian interpolation of surface potentials. 

The multi-subdomain approach together with a moving damping beach makes it possible for 
LONGTANK to simulate long-time evolutions of non-linear wave systems over sufficiently long 
distances, x / A  = O( lo2). LONGTANK has been used to study non-linear processes in deep water 
waves of moderate steepness," wave breaking in both shallow and deep water, breaker morphology, 
extreme wave and crest heights, breaking dissipation and vorticity generation," the breaking criterion, 
long-short-wave interaction and breaking13 with profitable results and findings. 

With growth in side-bands, very strong modulations leading to group formation, accompanied by a 
strong modulation of energy distribution in space and wave deformation, are observed. The energy and 
energy density in each wave quadrant have been calculated through numerical integration of the total 
wave energy in each vertical column under its appropriate wave quadrant, determined by the zero 
crossing and position of crests and troughs. A concentration of wave energy in the centre of the group, 
especially in the central crest, is found and the energy density on the breaking (forward) quadrant 
exceeds levels elsewhere in the wave train. 

t - 1. (- 37.03TJ 

I - 1, + 0.101. 

Figure 16. Wave-forms near breaking: (a) from Reference 26, (ak), N 0 '25; @) from LONGTANK simulations, (ak), = 0 .22, 
case 2.la 
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Figure 17. Evolution of a plunging jet following Figure 16 and preceding Figure 14: . . . . -, ballistic particle trajectories 
(estimated); 0, actual particle positions 

Monitoring the horizontal particle velocity at the wave crest reveals a common phenomenon 
occurring in all LONGTANK simulations, suggesting a criterion for the inception of wave breaking: 
when and only when the horizontal particle velocity reaches dwldk, wave breaking occurs inevitably 
in a short time, usually within a quarter of a wave period.13 

Comparison of the time intervals and the corresponding wave-forms in the last stage of breaking 
between LONGTANK simulations and experimental photographs of Bonmarin and Ramamonjiarisoa26 
shows excellent agreement (see Figure 16). The steepness of the simulated waves at breaking and the 
downtank distance to breaking compare very favourably with measurements of Su and Green9 (see 
Figure 16 of Reference 13 and Figure 6 of Reference 11). The local particle motion has also been 
studied in the simulations, showing that the particles near the tip of the jet almost exactly follow 
ballistic trajectories (see Figure 17), as expected since the pressure throughout the falling jet must be 
very close to atmospheric, leaving gravity as the dominant influence. These all tend to confirm the 
accuracy of LONGTANK simulation throughout the breaking stage. 
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